A Fuzzy Kernel Maximum Margin Criterion for Image Feature Extraction

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kernel-based feature extraction under maximum margin criterion

In this paper, we study the problem of feature extraction for pattern classification applications. RELIEF is considered as one of the best-performed algorithms for assessing the quality of features for pattern classification. Its extension, local feature extraction (LFE), was proposed recently and was shown to outperform RELIEF. In this paper, we extend LFE to the nonlinear case, and develop a ...

متن کامل

Feature extraction based on Laplacian bidirectional maximum margin criterion

Article history: Received 28 July 2008 Received in revised form 2 March 2009 Accepted 9 March 2009

متن کامل

Laplacian Maximum Margin Criterion for Image Recognition

Previous works have demonstrated that Laplacian embedding can well preserve the local intrinsic structure. However, it ignores the diversity and may impair the local topology of data. In this paper, we build an objective function to learn the local intrinsic structure that characterizes both the local similarity and diversity of data, and then combine it with global structure to build a scatter...

متن کامل

Feature extraction using maximum nonparametric margin projection

Dimensionality reduction is often recommended to handle high dimensional data before performing the tasks of visualization and classification. So far, large families of dimensionality reduction methods besides the supervised or the unsupervised, the linear or the nonlinear, the global or the local have been developed. In this paper, a maximum nonparametric margin projection (MNMP) method is put...

متن کامل

Comments on "Efficient and Robust Feature Extraction by Maximum Margin Criterion"

The goal of this comment is to first point out two loopholes in the paper by Li et al. (2006): 1) so-designed efficient maximal margin criterion (MMC) algorithm for small sample size (SSS) problem is problematic and 2) the discussion on the equivalence with the null-space-based methods in SSS problem does not hold. Then, we will present a really efficient MMC algorithm for SSS problem.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Problems in Engineering

سال: 2015

ISSN: 1024-123X,1563-5147

DOI: 10.1155/2015/641510